抽獎活動-期望值
- 2020.12.07
- 作者:授課橘數學小編
- 數學
- 1813
學習領域/科目別 | 數學 |
---|---|
情境範疇 | 生活 |
題幹
小王是公司福利委員,舉辦年度尾牙,公司員工有50人,老闆要求小王安排尾牙抽獎金務必「每人都要有獎,頭獎一萬2名,貳獎五千3名,參獎三千,肆獎五百元,讓員工參加尾牙抽獎的預期價值1500元」
問題一 |
請問參獎與肆獎獎項名額應如何分配? 參考答案 :
7名、38名
搭配學習內容/學習表現 :
D-10-4複合事件的古典機率:樣本空間與事件,複合事件的古典機率性質,期望值。 d-V-3 理解事件的不確定性,並能以機率將之量化。理解機率的性質並能操作其運算,能用以溝通和推論。 試題概念與分析 :
頭獎2個,貳獎3個,設參獎x個,肆獎y個且x≠0、y≠0 公司員工共有50人,預期價值為1500,共需花費75000元 頭獎2名,獎金為10000元,需花費20000元 貳獎3名,獎金為5000元,需花費15000元 剩下可知參獎與肆獎共有45人,即x+y=45 剩餘獎金需花費3000x+500y=40000,化簡得6x+y=80 故x=7、y=38 |
---|
延伸閱讀材料
推薦相關文章
留言